The multivulva phenotype of certain Caenorhabditis elegans mutants results from defects in two functionally redundant pathways.
نویسندگان
چکیده
We previously identified Caenorhabditis elegans mutants in which certain of the six vulval precursor cells adopt fates normally expressed by other vulval precursor cells. These mutants define genes that appear to function in the response to an intercellular signal that induces vulval development. The multivulva (Muv) phenotype of one such mutant, CB1322, results from an interaction between two unlinked mutations, lin-8(n111) II and lin-9(n112) III. In this paper, we identify 18 new mutations, which are alleles of eight genes, that interact with either lin-8(n111) or lin-9(n112) to generate a Muv phenotype. None of these 20 mutations alone causes any vulval cell lineage defects. The "silent Muv" mutations fall into two classes; hermaphrodites carrying a mutation of each class are Muv, while hermaphrodites carrying two mutations of the same class have a wild-type vulval phenotype. Our results indicate that the Muv phenotype of these mutants results from defects in two functionally-redundant pathways, thereby demonstrating that redundancy can occur at the level of gene pathways as well as at the level of gene families.
منابع مشابه
Multiple levels of redundant processes inhibit Caenorhabditis elegans vulval cell fates.
Many mutations cause obvious abnormalities only when combined with other mutations. Such synthetic interactions can be the result of redundant gene functions. In Caenorhabditis elegans, the synthetic multivulva (synMuv) genes have been grouped into multiple classes that redundantly inhibit vulval cell fates. Animals with one or more mutations of the same class undergo wild-type vulval developme...
متن کاملNew genes that interact with lin-35 Rb to negatively regulate the let-60 ras pathway in Caenorhabditis elegans.
Previous studies have shown that a synthetic multivulva phenotype results from mutations in genes that antagonize the ras-mediated intercellular signaling system responsible for vulval induction in Caenorhabditis elegans. Synthetic multivulva mutations define two classes of genes, A and B, and a mutation in a gene of each class is required to produce the multivulva phenotype. The ectopic vulval...
متن کاملLET-23-mediated signal transduction during Caenorhabditis elegans development.
We are using Caenorhabditis elegans vulval induction to study intercellular signaling and its regulation. Genes required for vulval induction include the LIN-3 transforming alpha-like growth factor, the LET-23 epidermal growth factor (EGF)-receptor-like transmembrane tyrosine kinase, the SEM-5 adaptor protein, LET-60 Ras, and the LIN-45 Raf serine/threonine kinase. Inactivation of this pathway ...
متن کاملlin-35 and lin-53, Two Genes that Antagonize a C. elegans Ras Pathway, Encode Proteins Similar to Rb and Its Binding Protein RbAp48
The Ras signaling pathway for vulval induction in Caenorhabditis elegans is antagonized by the activity of the synthetic multivulva (synMuv) genes, which define two functionally redundant pathways. We have characterized two genes in one of these pathways. lin-35 encodes a protein similar to the tumor suppressor Rb and the closely related proteins p107 and p130. lin-53 encodes a protein similar ...
متن کاملEvidence for parallel processing of sensory information controlling dauer formation in Caenorhabditis elegans.
Dauer formation in Caenorhabditis elegans is induced by chemosensation of high levels of a constitutively secreted pheromone. Seven genes defined by mutations that confer a dauer-formation constitutive phenotype (Daf-c) can be congruently divided into two groups by any of three criteria. Group 1 genes (daf-11 and daf-21) are (1) strongly synergistic with group 2 genes for their Daf-c phenotype,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 123 1 شماره
صفحات -
تاریخ انتشار 1989